Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold
نویسندگان
چکیده
We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.
منابع مشابه
Rapid response of rice plants to arsenite toxicity
Absorption of arsenic (As) by plant root is an essential activity that bridges the soil As concentration and physiological responses which can be monitored soon after exposure to As. In the present study, physiological responses to short exposure to arsenite (AsIII) was compared in two indigenous rice cultivars one adapted to temperate and humid (TH) and the second one to warm and humid (WH) cl...
متن کاملBio-gold Nanoparticle Synthesis by Metalophilic Bacterium Cupriavidus necator
Background and Aims: Gold nanoparticles have potential applications in the areas of medicine, target drug delivery, cancer diagnosis and therapy, electronic, etc. Recently, biological system is considered as an environmental friendly method for synthesis of stable nanoparticles. Methods: We demonstrated a biological system for formation of stable gold nanoparticle by using Cupriavidus necator w...
متن کاملتحمل مسمومیت منگنز در گیاهان آفتابگردان، برنج و ذرت در شرایط آبکشتی
Manganese toxicity occurs in many agricultural and natural ecosystems under the various soil conditions such as the nature of substrate, acidity, flooding or vicinity to the mining areas. The objective of this work was to study the effects of excess Mn in the growth medium on three important crop species, namely rice (Oryza sativa L. cv. T. Hashemi), maize (Zea mays L. cv. SC.704) and sunflower...
متن کاملتحمل مسمومیت منگنز در گیاهان آفتابگردان، برنج و ذرت در شرایط آبکشتی
Manganese toxicity occurs in many agricultural and natural ecosystems under the various soil conditions such as the nature of substrate, acidity, flooding or vicinity to the mining areas. The objective of this work was to study the effects of excess Mn in the growth medium on three important crop species, namely rice (Oryza sativa L. cv. T. Hashemi), maize (Zea mays L. cv. SC.704) and sunflower...
متن کاملPhytotoxicity of Lead and Chromium on Germination, Seedling Establishment and Metal Uptake by Kenaf and Mesta
Heavy metal contaminated soil raises major global environmental and agricultural concern. Recently soil pollution through lead (Pb) and chromium (Cr) becoming serious problem and remediation or utilization of those contaminated soil with potential crops is of the outmost importance. The objectives of present study were to examine the effects of Pb and Cr on three different kenaf and mesta varie...
متن کامل